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Abstract Transmission and photoluminescence measurements in GaAs/AlolAso.,As 
superlattices in which the layer widths v a q  randomly. illustrate the effects of one-dimensional 
non-periodic potentials on electronic energy states. The fundamental interband transition energy 
in the non-periodic StNClWeS is lower than that in the periodic case. A relation between this 
shift and the wavefunction localization length is derived. The PL emission from the non-periodic 
samples is ten to twenty times stronger than from the periodic samples. 

1. Introduction 

Non-periodic or disordered potentials affect physical phenomena of deep significance. The 
properties of periodic Hamiltonians are well understood and the one-electron Schrodinger 
equation with a periodic potential has served usefully as a mathematical model for perfect 
crystals. The problem becomes intricate when deviations from periodicity are introduced. In 
its most general form, the Schrtidinger equation for a particle of mass m in a one-dimensional 
potential, V.(z - z"), reads 

In the periodic case, Vn(z - z,) is centred about equally spaced points with identical shape 
and strength, yielding solutions of the Bloch form for the wavefunction. A non-crystalline 
or amorphous material, on the other hand, would be modelled by a non-periodic potential. A 
random potential is obtained if either or both V,, (strength) and z, (position) in equation (1) 
are randomly distributed. This is a.problem of some prominence, and commands attention 
in many fields of mathematics, physics and engineering [l]. An area of intense research 
activity is that of conductivity in a random potential distribution [2,3]. A profound effect 
of disorder is the localization of some of the electronic states which gives rise to scaling 
laws for the conductance quite unlike that of Ohm's law [4]. For one-dimensional disorder 
however, ' all states are localized. The localization length has been shown to be of the 
order of the mean free path (MFP) [Z, 51. The scaling laws would be particularly relevant 
in this situation- because the Ohm's law behaviour is invalid for all sample sizes greater 
or smaller than the MFP [4]. Samples with controlled and intentionally introduced disorder 
are desirable for studying the various aspects of localization. The controlled growth of 
epitaxially layered materials like the semiconductor heterostructure have made possible 
structures with a potential variation in one dimension (the growth direction), formed by 
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the alignment of the individual band gaps. One class of semiconductor heterostructures is 
the superlattice (SL), constructed by alternately layering two semiconductors with different 
band gaps. A fundamental unit comprising of a potential-well region (smaller band-gap 
material) and a barrier region (larger hand-gap material) is repeated along the growth 
direction. Calculation of electronicstates for this composite material is vastly simplified 
by the effective mass approximation (EMA) and the envelope function method, wherein 
the band gaps of the individual semiconductors align to form a potential consisting of 
alternate regions of rectangular wells and barriers for electrons in the conduction band 
(CB), and holes in the valence band (VB) in the direction perpendicular to the layers [6] .  
The height of the potential barrier depends on the band-gap difference, which in tum 
depends on the composition of the semiconductors. The electronic energy states group 
into mini bands separated by gaps. One may then conceive of a situation in which the 
layer thicknesses andlor compositions are varied randomly from one unit to the next, 
resulting in a structure that is disordered. Evolution of disorder-induced effects may then 
be examined by engineering superlattices with controlled amounts of disorder. There has 
been some work on disordered semiconductor sLs reported in the literature with the main 
idea of observing Anderson localization and mobility edges [7-111. Photoluminescence 
measurements and calculations have been performed which clearly indicate the presence of 
disorder induced localized states. In this work we have chosen to investigate the electronic 
stqtes in G ~ A S / A ~ ~ , ~ G % . ~ A S  superlattices in which the thicknesses of the GaAs layers are 
varied randomly, yieldin,. a non-periodic potential distribution in the EMA for electrons and 
holes, using photoluminescence (PL) and transmission measurements. These measurements 
yield the energy of transition between the bottom of the valence mini band and the bottom 
of the conduction mini band. Disorder introduces a red shift in the observed transitions. We 
examine the quantitative relation between the measured shift and the localization length. 
The localization length obtained in this manner is compared with that obtained from 
an independent numerical calculation of the wavefunction. The experimental results are 
presented first followed by the calculations, comparisons, and a discussion. 
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2. Experimental procedure 

Transmission and PL measurements in the spectral region of 1.2 eV to 2.0 eV were performed 
on two sets of GaAs/Alo,3G%.7As superlattices each consisting of an ordered or periodic SL 
(OSL) and a corresponding disordered or non-periodic SL (DSL) in which the well widths are 
randomly distributed about a mean value matching that of the 0%. Each sample consisted 
of forty GaAs wells separated by Alo.3Ga0.7As barriers of width 9 A. The period of the OSL, 
with well width Lw = 77 A was 86 (86 OSL) and that of the OSL with Lw = 40 A was 
49 A (49 OSL). In the corresponding DSLs, the well widths had a mean value of 77 A with 
a standard deviation, U, of 14 A in one and a mean of 40 A with a U of 12 A in the other. 
The samples were grown by MBE on GaAs substrates separated by a 1500 A buffer of GaAs 
followed by a layer of AIo,~G%.~As of thickness 2000 A. For transmission, a window was 
made by etching away a small region of the substrate and the sample was mounted on a glass 
plate. Measurements were made at 20 K, produced by a closed-cycle helium refrigerator. 
The transmission spectrum of white light from a 100 W tungsten lamp was measured for 
normal incidence. PL was excited by a laser diode emitting at a wavelength of 750 nm and 
measurements were made at 4.2 K and at various temperatures up to 45 K. The spectra were 
obtained using a Spex model 1700 II Czerny-Turner spectrometer, a photomultiplier tube 
and lock-in techniques. The absorption coefficient was extracted from the transmission data 
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by applying the equation for transmission through an absorbing thin film on a transparent 
subshate (the glass mount) surrounded by vacuum, given by [12] 

A 
ear + + Ccos(2y) 

T =  

where 

where 

.. 
The refractive indices of the vacuum, thin film (sample) and glass are denated by no(= l), 
nl(= n - ik), n2(= 1.5), f is the thickness of the film and h is the wavelength. The 
absorption coefficient, a, is related to the imaginary part of the refractive index of the 
sample by a = 4nk/A. Published values for GaAs were used for the real part n which 
is dispersive and varies between 3.6 and 3.8 in the region 1.5 eV to 1.8 eV [13]. The 
transmission spectra were normalized by setting the transmission values below the band 
gap to be that given by equation 2 assuming zero absorption. Plots of the spectrum of a 
for the four samples are presented in figuie 1. The plots have been displaced vertically for 
clarity. The position of the band edges rather than the absolute value of a is of relevance. 
The band edge at 1.51 eV observed in all four samples is from the remnants of the GaAs 
substrate/buffer that is not etched away. The features above this edge are the transitions of 
the superlattice. The PL data for the four samples are presented in figure 2. The main PL 
peak position and the fundamental absorption edge coincide in each case and correspond 
to the first heavy-hole exciton. The emissions at lower energies broaden and decrease 
in peak intensity with increase in temperature and are therefore identified to be impurity 
bound excitonic transitions. The first light-hole exciton is observed at higher temperatures. 
Transmission and PL data clearly show that the fundamental transitions for the DSLS are 
red-shifted from those of the corresponding OSLs. The second absorption band observed for 
the 86 OSL is missing in the 86 DSL. The PL intensities from the DSLS are ten to twenty times 
stronger thm those from the OSLS. Our goal is to undersrand these observed differences 
between the OSLs and DSLS and to relate them to quantitative aspects of'disorder. 

3. Calculations and discussion 

We consider first the red shift between the OSL and the DSL. In the EMA, the CB and VB 
edges of the constituent semiconductors are assumed to form a multiple-square-well potential 
distribution for electrons and holes. In a periodic potential the wavefunctions are extended. 
In a non-periodic field, repeated backscattering causes the wavefunction to be localized. 
The tail of the wavefunction decays exponentially with a decay length defined to be the 
localization length [4]. The relation between the'localization distances apd the density of 
states has been investigated by Thouless 1141. According to Thouless, in the limit of weak 
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Figure 1. Comparison of the optical absorption (m) of the DSL with that of the conerponding 
OSL for (a) 86 OSL and DSL, (b) 49 OSL and DSL. The first heavyhole excitonic m i t i o n  energy 
(in eV) indicmed for each curve coincides with the main PL peak posilion for Uwt sample, shown 
in figure 2. 

Figure 2. Photoluminescence at 4.2 K in (a) 86 OSL and DSL, (b) 49 OSL and DSL. 

disorder, the wavefunction amplitude localization length, {, is twice the MFP for backward 
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scattering, that is 

$ = 2 v r  (3) 

where U = L / ( h p ( E ) )  ( L  is the length of the sample, p ( E )  is the density of states, h is 
Planck's constant) is the velocity of the electron, T is the backward scattering time. The 
expression in equation 3 was obtained by treating the weak disorder a s a  perturbation over 
the periodic field. The matrix element of the perturbation connecting the energy levels of 
the unperturbed system is of the order of h/r  which is also the shift in energy produced by 
the perturbation or the disorder. Therefore the shift in the energy of the electronic ground 
state, El,, in a disordered potential may be expressed as 

AElC - A / T .  (4) 

Use of the uncertainty principle yields the same result. Combining the  relation^ (4) with 
equation (3) gives a relation between the localization length and the shift in electron energy 
in the limit of weak disorder that reads 

F = 2(L/hP(E))A/AElc.  

Replacing the density of states, p(E) ,  for the periodic system by its average value of ZN/ W ,  
where N is the number of repeating units (or wells) and W is the width of the energy mini 
band, gives 

where L / N  = d is the period of the supedattice. 
In the experiments, the measured quantity is the conduction ,to valence mini band 

transition energy, modified by the exciton binding energy, Enbe (due to the Coulomb 
attraction between the electron in the CB and the hole in the VB) and is given by 

En = EG + Em + En, - Eobc Ea. - Enbe 

where EG = 1.52 eV, is the value of the G A S  band gap. The subscript n is the mini band 
index, and E,, and E,, are the numerical values for the energy position of the bottom of the 
mini band as measured from the CB and VB edges of GaAs respectively. Transitions occur 
between conduction and valence mini bands of the same index for the OsLs. Transmission 
measurements yield E, and PL measurements yield El ,  while calculations give the values 
of E,, and E"". The observed red shift in El between the OSL and the DSL includes 
the shift in both E l ,  and E, ,  and the difference in the exciton binding energy. Thus 
A E I  = AElc + AElV + AEnbe. The exciton binding energy in the superlattices is nearly 
the~same as that in bulk where the value is 4.2 meV. Chomette etal have calculated a value 
of 5 meV for a similar SL of period 60 A [15]. Numerical calculations of the wavefunction 
and electronic energies for the 86 DSL show that the wavefunction, although localized has a 
full width at half maximum (FWHM) of 450 8, and the corresponding exciton binding energy 
is expected to be bulklike, just as for the OSL, so that AElbe = 0. Furthermore, the effect 
of disorder is stronger on the electrons than on the holes so that AEl ,  > AE1" 171. Thus 
for weak disorder, the red shift AE1 may be approximated as AElc of equation 5 .  For 
the 86 DSL, AE1 = 7.5 meV and the calculated value of W for the 86 0% is 48.5 meV. 
Substituting these values into equation (5),  gives 5 = 1.03 d. Independent calculations 
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of the wavefunctions and energies of the valence and conduction mini bands for both the 
DSLS and the OSLs were also performed using the numerical method described by Kolbas 
and Holonyak [16]. The potential banier height was taken to be 250 meV in the CB and 
150 meV in the VB [17], the values used for the electron effective mass were 0.067 mo 
in the well and 0.0919 mo in the barrier and that for the HH in the VB was 0.62 mo [18], 
where mo is the bare electron mass. The ground-state wavefunctions for the 86 OSL and 
DSL are plotted in figure 3. The wavefunction is oscillatory in both cases. In the OSLs the 
electron is confined within the SL of length L between boundaries at z = 0 and z = L 
and the wavefunction oscillation amplitudes may be taken to be of the form of sin(zz/L). 
Disorder causes the tail of the wavefunction to decay exponentially. The localization length, 
(, in the DSL, was then obtained by fitting the wavefunction oscillation amplitude to the 
form sin(rrz/L) exp(-z/:), in the tail region. For the 86 DSL, obtained in this manner 
was 1.6 d .  This is in remarkably close agreement with the value of 1.03 d obtained from 
equation 5. Calculations were also performed for another DSL of fifty wells with an average 
well width of 80  A and a standard deviation of 3 A. For this sample, A E L C  was calculated to 
be 0.5 meV and W was 45 meV, which when substituted in equation 5 yields, = 14.3 d. 
A fit to the calculated wavefunction gives ( = 12.8 d .  The observed value of El (1.592 eV) 
for the 40 OSL is higher than the calculated value of EA, (1.585 eV), indicating that the 
layer widths may be smaller than the assumed values. However, calculations do agree with 
the experimental value of El (1.563) for the 49 DSL if we assume an exciton binding energy 
of 8 meV. A value of 8 meV for the exciton binding energy is reasonable for the 49 DSL 
because the strong disorder in this sample causes the exciton to be more localized leading 
to a larger binding energy. The red shift of 30 meV observed for the 49 DSL is therefore 
not the true red shift from the OSL. Using the calculated values of W = 160 meV and 
A E , ,  = 9 meV for the 49 DSL in equation 5, gives ( = 2.8 d, while a fit to the calculated 
wavefunction gives 2.75 d.  

It is easy to understand the reason for not observing the second absorption edge for 
' the 86 DSL. Calculations show that for the 86 OSL two conduction mini bands exist below 
the continuum (within the well) and two absorption edges are observed. For the DSU 
there are no mini bands or gaps because of the lack of periodicity and consequently only 
the first transition, E , ,  is observed. In the present calculation, the use of the effective 
mass approximation together with the envelope function method permit a one-dimensional 
treatment for the superlattice potential. Wang etal [19] have calculated the density of states 
within a tight-binding framework for a three-dimensional periodic random superlattice, made 
up of two types of layers, in which the layers within a period are randomly distributed while 
the two-dimensional periodicity in the plane of the layers is preserved. The total number 
of layers considered is twenty. Their results show that a three-dimensional treatment yields 
band tail states that extend fa ther  into the band gap. Such a beatment would of course be 
prohibitive for our samples where the number of layers is 1200. A conclusion from their 
work that is of relevance here is that although the disorder may be one-dimensional, a three- 
dimensional treatment is needed for a correct description of the density of band tail states. 
These states lead to a tail in the absorption edge similar to the Urbach tail in amorphous 
materials [ZO] and a broadening of the PL line. These are effects that we observe in our 
experiments. In disordered systems the position of the band edge in transmission and the PL 
peak are identified as the mobility edge [ZO]. A one-dimensional treatment for our samples 
may not give the correct density of band tail states but gives a good first approximation for 
the band edge or the mobility edge. In this work we have been concerned with the position 
of the band edge rather that the width of the distribution of the band tail states. A shrinking 
of the effective band gap with increasing amounts of disorder is an established result [20] 
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Figure 3. Wavefunction in arbitrary units for the 86 OSL and the 86 DSL in the EMA dong the 
growth direction of the SL (2 ) .  

and we observe this for our intentionally disordered superlattices. A line shape analysis is 
an area for future work. 

We now turn to a discussion of the PL intensities in osrs'and DSLS. The free exciton 
in a 3D bulk crystal has translational symmetry and interacts with photons of the same 
wavevector forming the excitonic polariton which is a stationary state that in principle 
does not decay [Zl]. However interaction with crystal boundaries, imperfections in the 
crystal and acoustic phonons causes the radiative decay observed as PL. In a pure crystal, 
the free exciton is expected to have long radiative lifetimes. In a quantum well there 
is no translational symmetry in the growth direction and the exciton is localized in this 
direction. The confined exciton can couple to a whole distribution of photons of wavevector 
lkl < n q / c  (where n is the refractive index, 00 is the frequency of the photon at the exciton 
energy and c is the velocity of light) and radiative decay can occur resulting in a shorter 
radiative lifetime [22,23]. A similar comparison may be drawn between OSLS and DSLs. In 
the DSL the breakdown of translational symmetry in the growth direction causes the exciton 
to be localized. The free exciton in the DSL may therefore be expected to have a short 
lifetime than in the OSL. PL intensities are inversely proportional to the radiative lifetimes 
which could account for their enhancement in the D S U .  

We have attempted to illustrate that semiconductor superlattices are model candidates for 
studying disorder induced phenomena because the strength of disorder and the length scales 
can be controlled. We have shown that the localization length in disordered superlattices can 
be obtained very simply from a shift in the ground state energy. Disordered superlattices 
wiih varying degrees of disorder can be used for studying the characteristics of polaritonic 
luminescence. 
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